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Formal modeling is essential
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Formal Modeling
Verification


e.g. Model Checking

but usually difficult
Q. How about automatically learn a formal model?
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Active DFA Learning
[Angluin, Inform Comput’87]

Questions:  ,  w ∈ Ltarget ℒ(𝒜hyp) = Ltarget

Answers: Yes, No, Evidence w ∈ ℒ(𝒜hyp) △ Ltarget

Membership Equivalence
??

Learner Oracle
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It’s Time 
to Learn Time!

4
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TA: NFA + timing constraints by clocks, guards, resets


Timed word: Sequence of events + dwell time

• e.g. 1.3   press   2.3   release   1.5   press

Timed Automata/Words

5

[Alur & Dill, TCS’94]

t
00

1.3 press

1.3

2.3
relese

3.6

1.5 press

5.1
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Active Deterministic TA Learning
[Contribution]Timed word: Sequence of events + dwell time
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NOT the First Time to Learn Time!
Exact Learning of TAs


(w/ correctness guarantee)

For real-time automata

e.g. [An et al., Sci. China Inf. Sci. ’20]

For one-clock DTAs

e.g. [Xu et al., ATVA ’22] For Event-recording automata


e.g. [Grinchtein et al., TCS ’10] 
[Henry et al., FORMATS ‘20]

For (multi-clock) DTAs

[This work]

One clock + reset at 
each transition

Clock reset depends 
on the transition  label

more 

general

Non-exact methods also exist

e.g. [Aichernig  et al., NFM’20] with GA

Driven by Language 

Characterization


(inspired by  
[Maler & Pnueli, FoSSaCS’04])

Another Myhill-Nerode-
style characterization also 

exists (w/ nominal sets)

[Bojańczyk& Lasota, ICALP'12]
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Contributions

• Myhill-Nerode-style characterization to the timed 
languages recognizable by DTAs

• Idea: symbolic handling of timing constraints


• L*-style learning algorithm for DTAs


• Implementation + experiments  
→ Works for some practical benchmarks, e.g., FDDI

9
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Outline
• Quick Review: L* algorithm for DFA learning


• Focusing on Myhill-Nerode theorem & Nerode’s 
congruence


• Active learning of timed lang. recognizable by DTAs

• Myhill-Nerode-style characterization for timed lang.

• How the algorithm is extended


• Experiments

10
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Nerode's congruence
Nerode’s congruence ( ): For


• language:  


• prefixes: 

 iff. 


 
e.g. for (ab)*, ,  , … 

✔: Easy to construct  s.t.  from 


• Idea: Use as the state space

✘: Requires infinite comparison to check if  

≡L

L ⊆ Σ*
p, p′￼ ∈ Σ*

p ≡L p′￼ ∀s ∈ Σ* . p ⋅ s ∈ L ⟺ p′￼⋅ s ∈ L

L = ε ≡L 𝚊𝚋 𝚊 ≡L 𝚊𝚋𝚊

𝒜 ℒ(𝒜) = L ≡L

Σ*/ ≡L

p ≡L p′￼

11

Accepted iff s ∈ (𝚊𝚋) * Accepted iff s ∈ 𝚋(𝚊𝚋) *
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Learn. Lang. via approx. congruence

e.g.  iff  


✔: Requires finite comparison to check if  


✔: Still, easy to construct  from 


• Idea: Use as the state space for prefixes .


✔: Finite  is enough for regular lang.

• By Myhill-Nerode theorem ( is finite if  is regular)

ε ≈{ε,𝚋}
L ab ∀s ∈ {ε, 𝚋} ε ⋅ s ∈ L ⟺ ab ⋅ s ∈ L

p ≈S
L p′￼

𝒜 ≈S
L

P/ ≈S
L P ⊆ Σ*

S
Σ*/ ≡L L

12

Idea: approx.  by  with finite suffixes ≡L ≈S
L S ⊆ Σ*
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p ≈S
L p′￼

𝒜 ≈S
L

P/ ≈S
L P ⊆ Σ*

S
Σ*/ ≡L L

12

Suffixes to 
distinguish 

prefixes

Idea: approx.  by  with finite suffixes ≡L ≈S
L S ⊆ Σ*

Prefixes to 
cover states
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L* algorithm for Active DFA Learning
1. Systematically refine prefixes  and suffixes 

• e.g. Refine if contradiction is found


2. Test equiv. of  wrt  by mem. questions


3. Make  if is constructed w/o contradiction 
→ Use equiv. question to test the correctness


4. Evidence of  is used to refine  
→ Back to 1.

P S

p, p′￼ ∈ P S

𝒜hyp P/ ≈S
Ltarget

ℒ(𝒜hyp) ≠ Ltarget P

13

[Angluin, Inform Comput’87]

Questions:  ,  w ∈ Ltarget ℒ(𝒜hyp) = Ltarget

Answers: Yes, No, Evidence w ∈ ℒ(𝒜hyp) △ Ltarget

Membership Equivalence??
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Outline
• Quick Review: L* algorithm for DFA learning


• Focusing on Myhill-Nerode theorem & Nerode’s 
congruence


• Active learning of timed lang. recognizable by DTAs

• Myhill-Nerode-style characterization for timed lang.

• How the algorithm is extended


• Experiments

14

Focusing on this characterization
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Challenge 1: Time is continuous!

Observation: Nerode’s congruence on timed words  
does not work for learning


Example: For {a 1 b}, the following must be 
distinguished

• a 0.1

• a 0.11

• a 0.111

• …

L =

15

Accepted iff  = 0.9 bs

Accepted iff  = 0.89 bs

Accepted iff  = 0.889 bs

 must be Infinite!S



M. Waga (Kyoto U.)

Gadget 1: Elementary Languages

Elementary language: Timed language defined by


• word


• Intervals on the durations between events


Example:                                      includes


• a 0.1

• a 0.11

• a 0.111

• …

16

[Maler & Pnueri, FoSSaCS’04]

t
0

a
⌧0 2 (0, 1)

Use symbolic representation of time
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Challenge 2: Membership is inconsistent

Observation: 
We may not have  nor 


Example: p =                          , s =                                ,


 =                                              , and ,


p ⋅ s ⊆ L p ⋅ s ∩ L = ∅

p ⋅ s L = {𝚊 1 𝚋}

17

The notion of “membership” must be updated!!

t
0

a
⌧0 2 (0, 1)

t
0

⌧ 00 2 (0, 1)
b

t
0

a
⌧0 2 (0, 1) ⌧ 00 2 (0, 1)

b

 In  if L τ0 + τ′￼0 = 1
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Gadget 2: Symbolic Membership

Def. For timed lang. ,  is the strongest 
constraint s.t. 


Example: For ,


p =                          , s =                                , 




 is 

L, L′￼ 𝚖𝚎𝚖𝚜𝚢𝚖
L (L′￼)

∀w ∈ L′￼. w ∈ L ⟺ w ⊧ 𝚖𝚎𝚖𝚜𝚢𝚖
L (L′￼)

L = {𝚊 1 𝚋}

p ⋅ s =

𝚖𝚎𝚖𝚜𝚢𝚖
L (p ⋅ s) τ0 + τ′￼0 = 1

18

[Contribution]

t
0

a
⌧0 2 (0, 1)

t
0

⌧ 00 2 (0, 1)
b

t
0

a
⌧0 2 (0, 1) ⌧ 00 2 (0, 1)

b

Use the condition to be included



M. Waga (Kyoto U.)

Challenge 3: Direct comparison is too fine
w = 0.5 a


 = 0.3 a 0.2 aw′￼

19

satisfying 0C(c) = 0 for any c 2 C. For a clock valuation ⌫ over C and ⌧ 2 R�0,1

we denote by ⌫ + ⌧ the clock valuation satisfying (⌫ + ⌧)(c) = ⌫(c) + ⌧ for any2

c 2 C. For a clock valuation ⌫ 2 (R�0)C and ⇢ ✓ C, we denote by ⌫[⇢ := 0] the3

clock valuation satisfying (⌫[⇢ := 0])(x) = 0 for c 2 ⇢ and (⌫[⇢ := 0])(c) = ⌫(c)4

for c /2 ⇢. We denote by CC the set of constraints defined by a finite conjunction5

of inequalities c ./ d or c� c0 ./ d, where c, c0 2 C, d 2 Q, and ./ 2 {>,�,, <}.6

We denote
V

; by >. For a clock valuation ⌫ 2 (R�0)C and a constraint g 2 CC ,7

we denote ⌫ |= g if ⌫ satisfies g. A constraint g 2 CC is simple if for each c 2 C,8

g contains d < c ^ c < d+ 1 or d  c ^ c  d, and for each c, c0 2 C, g contains9

d < c� c0 ^ c� c0 < d+ 1 or d  c� c0 ^ c� c0  d, where d 2 Z.10

Definition 2 (timed automaton
1
). A timed automaton (TA) is a 7-tuple11

(⌃, L, l0, C, I,�, F ), where: ⌃ is the finite alphabet; L is the finite set of lo-12

cations; l0 2 L is the initial location; C is the finite set of clock variables;13

I : L ! CC is the invariant of each location; � ✓ L⇥CC⇥(⌃[{"})⇥P(C)⇥L is14

the set of edges; and F : L ! Pfin(CC) is the accepting condition of each location.15

l0 l1

a, c � 1/c := 0

a, c < 1

a, c  1

a, c > 1

Fig. 2: A DTA

A TA is deterministic if 1) for any a 2 ⌃ and16

(l, g, a, ⇢, l0), (l, g0, a, ⇢0, l00) 2 �, g ^ g0 is unsatis-17

fiable, or 2) for any (l, g, ", ⇢, l0) 2 �, g ^ I(l) is18

at most a singleton. Fig. 2 shows a deterministic19

timed automaton (DTA).20

The semantics of a TA is defined by a timed21

transition system (TTS).22

Definition 3 (semantics of TAs). For a TA A = (⌃, L, l0, C, I,�, F ), the23

timed transition system (TTS) S = (Q, q0, QF ,!) is as follows:24

• Q = L⇥ (R�0)C is the set of (concrete) states;25

• q0 = (l0,0C) is the initial state;26

• QF = {(l, ⌫) 2 Q | ⌫ |= F (l)} is the set of accepting states;27

• ! ✓ Q⇥Q is the transition relation consisting of the following2.28

• For each (l, ⌫) 2 Q and ⌧ 2 R>0, we have (l, ⌫)
⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30

• For each (l, ⌫), (l0, ⌫0) 2 Q, a 2 ⌃, and (l, g, a, ⇢, l0) 2 �, we have (l, ⌫)
a7!31

(l0, ⌫0) if we have ⌫ |= g and ⌫0 = ⌫[⇢ := 0].32

• For each (l, ⌫), (l0, ⌫0) 2 Q, ⌧ 2 R>0, and (l, g, ", ⇢, l0) 2 �, we have33

(l, ⌫)
",⌧7! (l0, ⌫0+⌧) if we have ⌫ |= g, ⌫0 = ⌫[⇢ := 0], and if ⌫0+⌧ 0 |= I(l0)34

holds for each ⌧ 0 2 [0, ⌧).35

A run of a TA A is an alternating sequence q0, 7!1, q1, . . . , 7!n, qn of states qi 2 Q36

and transitions 7!i 2 ! satisfying qi�1 7!i qi for any i 2 {1, 2, . . . , n}. A run37

q0, 7!1, q1, . . . , 7!n, qn is accepting if qn 2 QF . Given such a run, the associated38

timed word is the concatenation of the labels of the transitions. The (timed)39

language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
locations, e. g., in [2]. We note that this choice does not a↵ect the expressive power.

2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].
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language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
locations, e. g., in [2]. We note that this choice does not a↵ect the expressive power.

2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].

4

Clock valuations:

Symbolic membership:
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A TA is deterministic if 1) for any a 2 ⌃ and16

(l, g, a, ⇢, l0), (l, g0, a, ⇢0, l00) 2 �, g ^ g0 is unsatis-17

fiable, or 2) for any (l, g, ", ⇢, l0) 2 �, g ^ I(l) is18

at most a singleton. Fig. 2 shows a deterministic19

timed automaton (DTA).20

The semantics of a TA is defined by a timed21

transition system (TTS).22

Definition 3 (semantics of TAs). For a TA A = (⌃, L, l0, C, I,�, F ), the23

timed transition system (TTS) S = (Q, q0, QF ,!) is as follows:24

• Q = L⇥ (R�0)C is the set of (concrete) states;25

• q0 = (l0,0C) is the initial state;26

• QF = {(l, ⌫) 2 Q | ⌫ |= F (l)} is the set of accepting states;27

• ! ✓ Q⇥Q is the transition relation consisting of the following2.28

• For each (l, ⌫) 2 Q and ⌧ 2 R>0, we have (l, ⌫)
⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30

• For each (l, ⌫), (l0, ⌫0) 2 Q, a 2 ⌃, and (l, g, a, ⇢, l0) 2 �, we have (l, ⌫)
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(l0, ⌫0) if we have ⌫ |= g and ⌫0 = ⌫[⇢ := 0].32
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clock valuation satisfying (⌫[⇢ := 0])(x) = 0 for c 2 ⇢ and (⌫[⇢ := 0])(c) = ⌫(c)4

for c /2 ⇢. We denote by CC the set of constraints defined by a finite conjunction5

of inequalities c ./ d or c� c0 ./ d, where c, c0 2 C, d 2 Q, and ./ 2 {>,�,, <}.6
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g contains d < c ^ c < d+ 1 or d  c ^ c  d, and for each c, c0 2 C, g contains9
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• q0 = (l0,0C) is the initial state;26
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⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30
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(l0, ⌫0) if we have ⌫ |= g and ⌫0 = ⌫[⇢ := 0].32

• For each (l, ⌫), (l0, ⌫0) 2 Q, ⌧ 2 R>0, and (l, g, ", ⇢, l0) 2 �, we have33
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",⌧7! (l0, ⌫0+⌧) if we have ⌫ |= g, ⌫0 = ⌫[⇢ := 0], and if ⌫0+⌧ 0 |= I(l0)34

holds for each ⌧ 0 2 [0, ⌧).35

A run of a TA A is an alternating sequence q0, 7!1, q1, . . . , 7!n, qn of states qi 2 Q36

and transitions 7!i 2 ! satisfying qi�1 7!i qi for any i 2 {1, 2, . . . , n}. A run37

q0, 7!1, q1, . . . , 7!n, qn is accepting if qn 2 QF . Given such a run, the associated38

timed word is the concatenation of the labels of the transitions. The (timed)39

language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
locations, e. g., in [2]. We note that this choice does not a↵ect the expressive power.

2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].
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satisfying 0C(c) = 0 for any c 2 C. For a clock valuation ⌫ over C and ⌧ 2 R�0,1
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of inequalities c ./ d or c� c0 ./ d, where c, c0 2 C, d 2 Q, and ./ 2 {>,�,, <}.6

We denote
V
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we denote ⌫ |= g if ⌫ satisfies g. A constraint g 2 CC is simple if for each c 2 C,8

g contains d < c ^ c < d+ 1 or d  c ^ c  d, and for each c, c0 2 C, g contains9

d < c� c0 ^ c� c0 < d+ 1 or d  c� c0 ^ c� c0  d, where d 2 Z.10

Definition 2 (timed automaton
1
). A timed automaton (TA) is a 7-tuple11

(⌃, L, l0, C, I,�, F ), where: ⌃ is the finite alphabet; L is the finite set of lo-12

cations; l0 2 L is the initial location; C is the finite set of clock variables;13

I : L ! CC is the invariant of each location; � ✓ L⇥CC⇥(⌃[{"})⇥P(C)⇥L is14

the set of edges; and F : L ! Pfin(CC) is the accepting condition of each location.15
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A TA is deterministic if 1) for any a 2 ⌃ and16

(l, g, a, ⇢, l0), (l, g0, a, ⇢0, l00) 2 �, g ^ g0 is unsatis-17

fiable, or 2) for any (l, g, ", ⇢, l0) 2 �, g ^ I(l) is18

at most a singleton. Fig. 2 shows a deterministic19

timed automaton (DTA).20

The semantics of a TA is defined by a timed21

transition system (TTS).22

Definition 3 (semantics of TAs). For a TA A = (⌃, L, l0, C, I,�, F ), the23

timed transition system (TTS) S = (Q, q0, QF ,!) is as follows:24

• Q = L⇥ (R�0)C is the set of (concrete) states;25

• q0 = (l0,0C) is the initial state;26

• QF = {(l, ⌫) 2 Q | ⌫ |= F (l)} is the set of accepting states;27

• ! ✓ Q⇥Q is the transition relation consisting of the following2.28

• For each (l, ⌫) 2 Q and ⌧ 2 R>0, we have (l, ⌫)
⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30

• For each (l, ⌫), (l0, ⌫0) 2 Q, a 2 ⌃, and (l, g, a, ⇢, l0) 2 �, we have (l, ⌫)
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holds for each ⌧ 0 2 [0, ⌧).35

A run of a TA A is an alternating sequence q0, 7!1, q1, . . . , 7!n, qn of states qi 2 Q36

and transitions 7!i 2 ! satisfying qi�1 7!i qi for any i 2 {1, 2, . . . , n}. A run37

q0, 7!1, q1, . . . , 7!n, qn is accepting if qn 2 QF . Given such a run, the associated38

timed word is the concatenation of the labels of the transitions. The (timed)39

language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
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satisfying 0C(c) = 0 for any c 2 C. For a clock valuation ⌫ over C and ⌧ 2 R�0,1

we denote by ⌫ + ⌧ the clock valuation satisfying (⌫ + ⌧)(c) = ⌫(c) + ⌧ for any2

c 2 C. For a clock valuation ⌫ 2 (R�0)C and ⇢ ✓ C, we denote by ⌫[⇢ := 0] the3

clock valuation satisfying (⌫[⇢ := 0])(x) = 0 for c 2 ⇢ and (⌫[⇢ := 0])(c) = ⌫(c)4

for c /2 ⇢. We denote by CC the set of constraints defined by a finite conjunction5

of inequalities c ./ d or c� c0 ./ d, where c, c0 2 C, d 2 Q, and ./ 2 {>,�,, <}.6

We denote
V

; by >. For a clock valuation ⌫ 2 (R�0)C and a constraint g 2 CC ,7

we denote ⌫ |= g if ⌫ satisfies g. A constraint g 2 CC is simple if for each c 2 C,8

g contains d < c ^ c < d+ 1 or d  c ^ c  d, and for each c, c0 2 C, g contains9

d < c� c0 ^ c� c0 < d+ 1 or d  c� c0 ^ c� c0  d, where d 2 Z.10

Definition 2 (timed automaton
1
). A timed automaton (TA) is a 7-tuple11

(⌃, L, l0, C, I,�, F ), where: ⌃ is the finite alphabet; L is the finite set of lo-12

cations; l0 2 L is the initial location; C is the finite set of clock variables;13

I : L ! CC is the invariant of each location; � ✓ L⇥CC⇥(⌃[{"})⇥P(C)⇥L is14

the set of edges; and F : L ! Pfin(CC) is the accepting condition of each location.15

l0 l1

a, c � 1/c := 0

a, c < 1

a, c  1

a, c > 1

Fig. 2: A DTA

A TA is deterministic if 1) for any a 2 ⌃ and16

(l, g, a, ⇢, l0), (l, g0, a, ⇢0, l00) 2 �, g ^ g0 is unsatis-17

fiable, or 2) for any (l, g, ", ⇢, l0) 2 �, g ^ I(l) is18

at most a singleton. Fig. 2 shows a deterministic19

timed automaton (DTA).20

The semantics of a TA is defined by a timed21

transition system (TTS).22

Definition 3 (semantics of TAs). For a TA A = (⌃, L, l0, C, I,�, F ), the23

timed transition system (TTS) S = (Q, q0, QF ,!) is as follows:24

• Q = L⇥ (R�0)C is the set of (concrete) states;25

• q0 = (l0,0C) is the initial state;26

• QF = {(l, ⌫) 2 Q | ⌫ |= F (l)} is the set of accepting states;27

• ! ✓ Q⇥Q is the transition relation consisting of the following2.28

• For each (l, ⌫) 2 Q and ⌧ 2 R>0, we have (l, ⌫)
⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30

• For each (l, ⌫), (l0, ⌫0) 2 Q, a 2 ⌃, and (l, g, a, ⇢, l0) 2 �, we have (l, ⌫)
a7!31

(l0, ⌫0) if we have ⌫ |= g and ⌫0 = ⌫[⇢ := 0].32

• For each (l, ⌫), (l0, ⌫0) 2 Q, ⌧ 2 R>0, and (l, g, ", ⇢, l0) 2 �, we have33

(l, ⌫)
",⌧7! (l0, ⌫0+⌧) if we have ⌫ |= g, ⌫0 = ⌫[⇢ := 0], and if ⌫0+⌧ 0 |= I(l0)34

holds for each ⌧ 0 2 [0, ⌧).35

A run of a TA A is an alternating sequence q0, 7!1, q1, . . . , 7!n, qn of states qi 2 Q36

and transitions 7!i 2 ! satisfying qi�1 7!i qi for any i 2 {1, 2, . . . , n}. A run37

q0, 7!1, q1, . . . , 7!n, qn is accepting if qn 2 QF . Given such a run, the associated38

timed word is the concatenation of the labels of the transitions. The (timed)39

language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
locations, e. g., in [2]. We note that this choice does not a↵ect the expressive power.

2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].
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2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].

4

●

●
c = 0.5

c = 0.5

Clock valuations:

Symbolic membership:



M. Waga (Kyoto U.)

Challenge 3: Direct comparison is too fine
w = 0.5 a


 = 0.3 a 0.2 aw′￼

19

satisfying 0C(c) = 0 for any c 2 C. For a clock valuation ⌫ over C and ⌧ 2 R�0,1

we denote by ⌫ + ⌧ the clock valuation satisfying (⌫ + ⌧)(c) = ⌫(c) + ⌧ for any2

c 2 C. For a clock valuation ⌫ 2 (R�0)C and ⇢ ✓ C, we denote by ⌫[⇢ := 0] the3

clock valuation satisfying (⌫[⇢ := 0])(x) = 0 for c 2 ⇢ and (⌫[⇢ := 0])(c) = ⌫(c)4

for c /2 ⇢. We denote by CC the set of constraints defined by a finite conjunction5

of inequalities c ./ d or c� c0 ./ d, where c, c0 2 C, d 2 Q, and ./ 2 {>,�,, <}.6

We denote
V

; by >. For a clock valuation ⌫ 2 (R�0)C and a constraint g 2 CC ,7

we denote ⌫ |= g if ⌫ satisfies g. A constraint g 2 CC is simple if for each c 2 C,8

g contains d < c ^ c < d+ 1 or d  c ^ c  d, and for each c, c0 2 C, g contains9

d < c� c0 ^ c� c0 < d+ 1 or d  c� c0 ^ c� c0  d, where d 2 Z.10

Definition 2 (timed automaton
1
). A timed automaton (TA) is a 7-tuple11

(⌃, L, l0, C, I,�, F ), where: ⌃ is the finite alphabet; L is the finite set of lo-12

cations; l0 2 L is the initial location; C is the finite set of clock variables;13

I : L ! CC is the invariant of each location; � ✓ L⇥CC⇥(⌃[{"})⇥P(C)⇥L is14

the set of edges; and F : L ! Pfin(CC) is the accepting condition of each location.15

l0 l1

a, c � 1/c := 0

a, c < 1

a, c  1

a, c > 1

Fig. 2: A DTA

A TA is deterministic if 1) for any a 2 ⌃ and16

(l, g, a, ⇢, l0), (l, g0, a, ⇢0, l00) 2 �, g ^ g0 is unsatis-17

fiable, or 2) for any (l, g, ", ⇢, l0) 2 �, g ^ I(l) is18

at most a singleton. Fig. 2 shows a deterministic19

timed automaton (DTA).20

The semantics of a TA is defined by a timed21

transition system (TTS).22

Definition 3 (semantics of TAs). For a TA A = (⌃, L, l0, C, I,�, F ), the23

timed transition system (TTS) S = (Q, q0, QF ,!) is as follows:24

• Q = L⇥ (R�0)C is the set of (concrete) states;25

• q0 = (l0,0C) is the initial state;26

• QF = {(l, ⌫) 2 Q | ⌫ |= F (l)} is the set of accepting states;27

• ! ✓ Q⇥Q is the transition relation consisting of the following2.28

• For each (l, ⌫) 2 Q and ⌧ 2 R>0, we have (l, ⌫)
⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30
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and transitions 7!i 2 ! satisfying qi�1 7!i qi for any i 2 {1, 2, . . . , n}. A run37

q0, 7!1, q1, . . . , 7!n, qn is accepting if qn 2 QF . Given such a run, the associated38

timed word is the concatenation of the labels of the transitions. The (timed)39

language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
locations, e. g., in [2]. We note that this choice does not a↵ect the expressive power.

2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].
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4

satisfying 0C(c) = 0 for any c 2 C. For a clock valuation ⌫ over C and ⌧ 2 R�0,1

we denote by ⌫ + ⌧ the clock valuation satisfying (⌫ + ⌧)(c) = ⌫(c) + ⌧ for any2

c 2 C. For a clock valuation ⌫ 2 (R�0)C and ⇢ ✓ C, we denote by ⌫[⇢ := 0] the3

clock valuation satisfying (⌫[⇢ := 0])(x) = 0 for c 2 ⇢ and (⌫[⇢ := 0])(c) = ⌫(c)4

for c /2 ⇢. We denote by CC the set of constraints defined by a finite conjunction5

of inequalities c ./ d or c� c0 ./ d, where c, c0 2 C, d 2 Q, and ./ 2 {>,�,, <}.6

We denote
V

; by >. For a clock valuation ⌫ 2 (R�0)C and a constraint g 2 CC ,7

we denote ⌫ |= g if ⌫ satisfies g. A constraint g 2 CC is simple if for each c 2 C,8

g contains d < c ^ c < d+ 1 or d  c ^ c  d, and for each c, c0 2 C, g contains9

d < c� c0 ^ c� c0 < d+ 1 or d  c� c0 ^ c� c0  d, where d 2 Z.10

Definition 2 (timed automaton
1
). A timed automaton (TA) is a 7-tuple11

(⌃, L, l0, C, I,�, F ), where: ⌃ is the finite alphabet; L is the finite set of lo-12

cations; l0 2 L is the initial location; C is the finite set of clock variables;13

I : L ! CC is the invariant of each location; � ✓ L⇥CC⇥(⌃[{"})⇥P(C)⇥L is14

the set of edges; and F : L ! Pfin(CC) is the accepting condition of each location.15

l0 l1

a, c � 1/c := 0

a, c < 1

a, c  1

a, c > 1

Fig. 2: A DTA

A TA is deterministic if 1) for any a 2 ⌃ and16

(l, g, a, ⇢, l0), (l, g0, a, ⇢0, l00) 2 �, g ^ g0 is unsatis-17

fiable, or 2) for any (l, g, ", ⇢, l0) 2 �, g ^ I(l) is18

at most a singleton. Fig. 2 shows a deterministic19

timed automaton (DTA).20

The semantics of a TA is defined by a timed21

transition system (TTS).22

Definition 3 (semantics of TAs). For a TA A = (⌃, L, l0, C, I,�, F ), the23

timed transition system (TTS) S = (Q, q0, QF ,!) is as follows:24

• Q = L⇥ (R�0)C is the set of (concrete) states;25

• q0 = (l0,0C) is the initial state;26

• QF = {(l, ⌫) 2 Q | ⌫ |= F (l)} is the set of accepting states;27

• ! ✓ Q⇥Q is the transition relation consisting of the following2.28

• For each (l, ⌫) 2 Q and ⌧ 2 R>0, we have (l, ⌫)
⌧7! (l, ⌫+⌧) if ⌫+⌧ 0 |= I(l)29

holds for each ⌧ 0 2 [0, ⌧).30

• For each (l, ⌫), (l0, ⌫0) 2 Q, a 2 ⌃, and (l, g, a, ⇢, l0) 2 �, we have (l, ⌫)
a7!31

(l0, ⌫0) if we have ⌫ |= g and ⌫0 = ⌫[⇢ := 0].32

• For each (l, ⌫), (l0, ⌫0) 2 Q, ⌧ 2 R>0, and (l, g, ", ⇢, l0) 2 �, we have33

(l, ⌫)
",⌧7! (l0, ⌫0+⌧) if we have ⌫ |= g, ⌫0 = ⌫[⇢ := 0], and if ⌫0+⌧ 0 |= I(l0)34

holds for each ⌧ 0 2 [0, ⌧).35

A run of a TA A is an alternating sequence q0, 7!1, q1, . . . , 7!n, qn of states qi 2 Q36

and transitions 7!i 2 ! satisfying qi�1 7!i qi for any i 2 {1, 2, . . . , n}. A run37

q0, 7!1, q1, . . . , 7!n, qn is accepting if qn 2 QF . Given such a run, the associated38

timed word is the concatenation of the labels of the transitions. The (timed)39

language L(A) is the set of timed words associated with all accepting runs of A.40

1 We define the acceptance by the accepting conditions in [9] instead of the accepting
locations, e. g., in [2]. We note that this choice does not a↵ect the expressive power.

2 We use
",⌧7! to avoid the discussion with an arbitrary small time elapse in [9].

4

●

●
c = 0.5

c = 0.5

For                                              is p ⋅ s = 𝚖𝚎𝚖𝚜𝚢𝚖
L (p ⋅ s) τ0 + τ′￼0 < 1

t
0

⌧0 2 (0, 1)
a
⌧ 00 2 (0, 1)

a

t
0

⌧0 2 (0, 1)
a
⌧1 2 (0, 1)

a
⌧ 00 2 (0, 1)

a

For                                             


 is 

p′￼⋅ s =

𝚖𝚎𝚖𝚜𝚢𝚖
L (p ⋅ s) τ0 + τ1 + τ′￼0 < 1

Clock valuations:

Symbolic membership:

Equivalent!
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Challenge 3: Direct comparison is too fine
w = 0.5 a


 = 0.3 a 0.2 aw′￼
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Gadget 3: Equivalence up to Renaming
Def. For


• timed language: 


• (prefix) elementary lang.: 


 iff. for any (suffix) elementary lang. s,  
and  are equivalent up to some renaming

L
p, p′￼

p ≡timed
L p′￼ 𝚖𝚎𝚖𝚜𝚢𝚖

L (p ⋅ s)
𝚖𝚎𝚖𝚜𝚢𝚖

L (p′￼⋅ s)

20

[Contribution]

Example:


For                              and                                              ,


we have  with renaming 

p = p′￼ =

p ≡timed
L p′￼ τ0 ⇆ τ0 + τ1

t
0

⌧0 2 (0, 1)
a

t
0

⌧0 2 (0, 1)
a
⌧1 2 (0, 1)

a

 is 𝚖𝚎𝚖𝚜𝚢𝚖
L (p ⋅ s)

τ0 + τ′￼0 < 1
 is 𝚖𝚎𝚖𝚜𝚢𝚖

L (p ⋅ s)
τ0 + τ1 + τ′￼0 < 1

Abstract the reset “position”
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Myhill-Nerode-Style Characterization

Theorem

 makes finite classes iff.  is recognizable by a DTA


Corollary The above classes are distinguishable by a 
finite set  of elementary lang.


→ We can learn a DTA via incremental construction of 

≡timed
L L

S

S
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[Contribution]
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L*timed algorithm for Active DTA Learning

Diff. 1: Use symbolic membership questions

• Achieved by finitely many membership questions


Diff. 2: Search renaming to test equivalence

• Exhaustive trial w/o additional questions (by memoization)


Diff. 3: Definition of “contradiction” to refine  and  is changed

• Due to continuity of time 

P S

22

[Contribution]

Questions:  ,  w ∈ Ltarget ℒ(𝒜hyp) = Ltarget

Answers: Yes, No, Evidence w ∈ ℒ(𝒜hyp) △ Ltarget

Membership
Equivalence??

Outline is same as the L* for DFAs
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DTA from Nerode-style Congruence

23

Nerode-style

Congruence

Monoid-based

Characterization

[Maler & Pnueli, FoSSaCS’04]) 

DTA

Construction in

[Maler & Pnueli, FoSSaCS’04] 

Straightforward

t
0

⌧0 2 (0, 1)
a

t
0

⌧0 2 (0, 1)
a
⌧1 2 (0, 1)

a

and

are equivalent
t

0

⌧0 2 (0, 1)
a

t
0

⌧0 2 (0, 1)
a
⌧1 2 (0, 1)

a

Timed words in 

are mapped to 
timed words in

Conceptually similar 
e.g. elem. lang., 

renaming 
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But no optimization yet…
Correct but with 

many clocks
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No minimality in DTA construction

Much like zone 
graph

Target DTA Learned DTA

# of loops (6) is 
encoded by clock

This example is based on an input from Frits Vaandrager via private communication
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Correctness and Complexity
Theorem

For any DTA , L*timed returns a DTA  satisfying 

 with finite queries.


Theorem

The number of membership queries is singly 
exponential to  and doubly exponential to .


• First exp. of is same as zone/region


• Another exp. to make symbolic membership

• The other part is polynomial (same as L*)

𝒜tgt 𝒜hyp
ℒ(𝒜tgt) = ℒ(𝒜hyp)

|Qtgt | |Ctgt |

|Ctgt |

26

Correctness with finite 

queries
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Outline
• Quick Review: L* algorithm for DFA learning


• Focusing on Myhill-Nerode theorem & Nerode’s 
congruence


• Active learning of timed lang. recognizable by DTAs

• Myhill-Nerode-style characterization for timed lang.

• How the algorithm is extended


• Experiments

27
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Setting of Experiments
• Implemented L*timed in C++


• Show the results for 7 practical benchmarks taken from 
literature

• The other results are in the paper


• Baseline: OneSMT (Xu et al., ATVA’22) 

• Outline is similar but dedicated to one-clock DTAs

• Python implementation


• Intel Core i9-10980XE 125 GiB RAM with Ubuntu 20.04.5 LTS

28
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# of Membership Questions

29

OneSMT L*timed (Ours)

Auth. Key Man. 3,453 12,263

Car Alarm Sys. 4,769 66,067

Light 210 3,057

Particle Cont. 10,390 245,134

TCP 4,713 11,300

Train 838 13,487

FDDI N/A (7 clocks) 9,986,271

L*timed requires more questions due to general setting

Only for one-clock DTAs
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# of Equivalence Questions

30

OneSMT L*timed (Ours)

Auth. Key Man. 49 11

Car Alarm Sys. 18 17

Light 7 7

Particle Cont. 29 23

TCP 32 15

Train 13 8

FDDI N/A (7 clocks) 43

Characterization by  seems helpful to find contradictions≈S
L

Only for one-clock DTAs
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Execution Time

31

OneSMT L*timed (Ours)

Auth. Key Man. 7.97 sec 0.585 sec

Car Alarm Sys. 95.8 sec 4.65 sec

Light 0.932 sec 0.0330 sec

Particle Cont. 124 sec 64.9 sec

TCP 22.0 sec 0.382 sec

Train 1.13 sec 0.172 sec

FDDI N/A (7 clocks) 3000 sec

Perhaps C++ vs. Python but can be by less eq. queries

Only for one-clock DTAs
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Conclusion
• Myhill-Nerode-style characterization to the timed 

languages recognizable by DTAs

• Idea: symbolic handling of timing constraints


• L*-style learning algorithm for DTAs


• Implementation + experiments  
→ Works for some practical benchmarks, e.g., FDDI

32

Symbolic Suffixes 
to distinguish 

prefixes

Symbolic 
Prefixes to cover 

states

Timed 
Language 

Identification
Questions:  ,  w ∈ Ltarget ℒ(𝒜hyp) = Ltarget

Answers: Yes, No, Evidence w ∈ ℒ(𝒜hyp) △ Ltarget

Membership Equivalence??
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Future Directions
• Comparison with the characterization with nominal sets


• Optimization of DTA construction


• e.g. reduction of clocks


• Handling of I/O actions


• action? and action!


• Combination with model checking for testing

33
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Appendix

34
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Example
Target DTA

Observation Table

Learned DTA
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Example: Train (Target)
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Example: Train (Learned)
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Summary of Experiment


